
The Life Cycles of Stars: Using the Hertzsprung-Russell (H-R) Diagram Earth Science/Geology Mr. Traeger

Name:	Period:	Date:		
Purpose The purpose of this activity is to become more familiar with the life cycles of stars and how the Hertzsprung-Russell (H-R) diagram is used to plot their life cycles.				
<u>Materials</u> ■ Pencil	Textbook pages 626-630	Ruler		
 Procedure Plot the following 25 stars on the Color your plot according to the Label each section on your grap sequence, red dwarf, or white do 	diagram on page 626 in your book oh as blue giant, blue supergiant, re			
Questions 1. How can you use this diagra	am to plot the life cycle of a star?			
How does temperature affect	ct what class a star falls in to?			
3. How does luminosity affect v	what class a star falls in to?			
4. Use the tuning fork diagram	below to label the life cycle of a sta	ar		
	→ — —	→		

The Life Cycles of Stars: Using the Hertzsprung-Russell (H-R) Diagram Earth Science/Geology Mr. Traeger

1. Properties of Selected Stars

Vomber	Star Name	Visual Luminosity	Surface Temperature (K)
1	Sun	1.0	5800
2	Luyten 726-8A	0.0006	2600
3	Epsilon Eridani	0.30	4600
4	Aldebaran	690	3800
5	Eta Aurigae	580	16,000
6	Rigel	89,000	12,000
7	Betelgeuse	20,000	3300
8	Mu Camelopardalis	150	3000
9	Canopus	9100	7400
10	Sirius A	23	10,000
11	Sirius B	0.003	10,000
t2	BD +5° 1668	0.0015	3000
13	Procyon A	7.6	6500
14	lota Ursae Majoris	11	7800
15	Zeta Leonis	50	8800
16	Wolf359	0.00002	2600
17	Lalande 21185	0.0055	3300
18	Ross 128	9.00036	2800
19	Spica	1900	20,000
20	Arcturus	76	3900
21	Alpha Centauri A	1.3	5800
22	Beta Canis Minoris	240	12,000
23	Antares	3600	3000
24	Zeta Ophiuchi	4500	23,000
25	Vega	52	11,000