A Change of State: The Wonderful W	/orld of Water!
Earth Science/Geology	Mr. Traeger

Name:

Period: _____

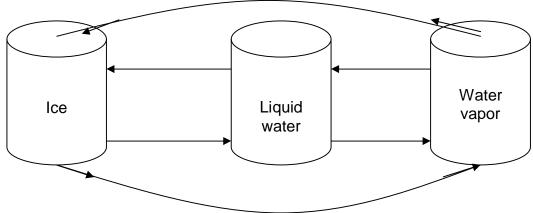
Date:

Water comes in many forms. Understanding these different forms will help us to understand our weather more thoroughly.

Part 1: Water Basics

- 1. Draw the molecular structure of water.
- 2. Name all of the forms that you have seen water exist in.

Part 2: Drops on a Penny


1. Doing 3 trials, see how many drops of water you can fit on the heads and tails of a penny. Make sure to do this on a paper plate!

Side of Penny	Trial 1	Trial 2	Trial 3
Heads			
Tails			

2. Why are you able to fit so many drops of water on the head of a penny? What does this say about the bonding together of water molecules?

3. What is this special property of water called?

Part 3: Change of State

- 1. Fill in the diagram above as Mr. T does it on the board.
- 2. In which direction does energy go into the beakers? Left or Right
- 3. In which direction does energy go out of the beakers? Left or Right

A Change of State: The Wonderful World of Water!

Earth Science/Geology

Mr. Traeger

Part 4: Heating of Water

	1. Fill in the data table below as Mr. T heats the water in the front of the room.																				
	Time in	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Minutes																					
	Temperature																				
	in °Celsius																				

. .

2. Graph this data below:

. .

..

x-axis label: _____

- 3. What temperature does water melt/freeze at?
- 4. What temperature does water boil at?
- 5. Why doesnot the temperature rise at the beginning of the heating when the water is ice? Where is the energy going to?
- 6. Where does the energy go to when water is between 0° and 100° Celsius?
- 7. Why does the temperature stop rising after 100° Celsius? Where is the energy going to?
- 8. What will eventually happen to the level of water in the beaker if we leave the water boiling? What will this do to the humidity of this room?