Slingin' that Psychrometer: Measuring Relative Humidity and Dew Point Geology/Earth Science Mr. Traeger

Name:	Period:	Date:

Purpose

To measure the relative humidity and dew point of air. To see how relative humidity varies from place to place. To see how temperature affects relative humidity.

Materials

• Sling psychrometer kit

Distilled water

Procedure

- 1. Get into groups of 3. Obtain a sling psychrometer for your group.
- 2. Soak the wet bulb of the sling psychrometer with *distilled* water.
- 3. Whirl the psychrometer above your head for about 30 to 40 seconds.
- 4. Immediately record the dry bulb temperature and wet bulb temperature.
- 5. Repeat steps 1-4 another two times at each site for accuracy.
- 6. Fill in the other blanks by using the supplementary instructions for the psychrometer.
- 7. An alternative, less accurate way to find Relative Humidity is by using the chart below.

Relative Hum	nidity (%)						
Dry Bulb Temperature (°C)	Wet Bulk (°C)	Depression	on (Dry Bul	b Tempera	ature . We	t Bulb Ten	nperature
	0	3	6	9	12	15	18
0	100	46					
8	100	63	29				
16	100	71	46	23			
24	100	77	56	37	20	5	
32	100	80	62	46	32	20	9

Sling Psychrometer Measurements

Site	Dry-	Wet-	(Dry Bulb .	Dew	Vapor	Vapor	Relative
Description	Bulb	Bulb	Wet Bulb)	Point	Pressure	Pressure	Humidity
	Temp	Temp	or Wet	Temp	at Dry	at Dew	
			Bulb		Temp	Point	
			Depression				
Example	22 °C	20 °C	2 °C	17 °C	26.1 mb	19.2 mb	(19.2/26.1)
							x 100 =
							74%
Classroom:							
Trial 1							
Classroom:							
Trial 2							
Classroom:							
Trial 3							

Slingin' that Psychrometer: Measuring Relative Humidity and Dew Point Geology/Earth Science Mr. Traeger

Site Description	Dry- Bulb Temp	Wet- Bulb Temp	(Dry Bulb . Wet Bulb) or Wet Bulb Depression	Dew Point Temp	Vapor Pressure at Dry Temp	Vapor Pressure at Dew Point	Relative Humidity
Sunny: Trial							
Sunny: Trial 2							
Sunny: Trial							
Shady: Trial 1							
Shady: Trial 2							
Shady: Trial 3							

Questions

- 1. What is specific humidity?
- 2. What is relative humidity?
- 3. Which type of humidity, specific or relative, is affected by temperature?
- 4. Look at your data. Was there any difference between relative humidity in the sun compared to relative humidity in the shade? Why?
- 5. Warmer air will hold more moisture. If this statement is true, what do you think will happen to *relative* humidity when the temperature rises? What will happen to *specific* humidity?
- 6. What is dew point?
- 7. What are condensation nuclei? How do they help clouds/fog to form?
- 8. What will happen when the air temperature and the dew point temperature are the same? What will be the relative humidity reading when this happens?