Name: \qquad Period: \qquad Date:

1. What is Isaac Newton介̂ Law of Gravitation? Write out the formula and explain it.
2. What is r̃Gòin the Law of Gravitation?
3. What do \tilde{m}_{1} òand \tilde{m}_{2} òstand for in the Law of Gravitation?
4. What does r̃òstand for in the Law of Gravitation?
5. If you double the r̃òterm in the denominator from 1 to 2 and then square it, by how much will the force of gravity decrease?
6. You will now calculate the force of gravity on the Earth from both the sun and the moon. Use \mathbf{r}^{3} instead of \mathbf{r}^{2} in the denominator ONLY FOR TIDAL FORCE CALCULATIONS. All other force calculations use r^{2}. Fill in the following chart.

Body	Value of G?	Mass of Earth (m_{1}) in kilograms	Mass of Body (m_{2}) in kilograms	Value of G $\times m_{1} \times m_{2}$ in $\mathrm{N}^{*} \mathrm{~m}^{2}$ (numerator)	Radius from Earth (r) meters	Radius from Earth cubed in meters ${ }^{3}$ (denominator)	Tidal Force in Newtons? Take the numerator and divide it by the denominator	Divide the Sunês tidal force by the Moonŝ tidal force.
Sun	$\begin{aligned} & 6.67 \mathrm{e}^{-11} \\ & \mathrm{~N}^{*} \mathrm{~m}^{2} / \mathrm{kg}^{2} \end{aligned}$	$5.97 \mathrm{e}^{24} \mathrm{~kg}$	$1.99 \mathrm{e}^{30} \mathrm{~kg}$		$\begin{aligned} & 1.50 e^{11} \\ & \mathrm{~m} \end{aligned}$			
Moon	$\begin{aligned} & 6.67 \mathrm{e}^{-11} \\ & \mathrm{~N}^{*} \mathrm{~m}^{2} / \mathrm{kg}^{2} \end{aligned}$	$5.97 \mathrm{e}^{24} \mathrm{~kg}$	$7.35 \mathrm{e}^{22} \mathrm{~kg}$		$\begin{aligned} & 3.91 e^{8} \\ & m \end{aligned}$			

7. After doing the calculation, why is the effect of the ocean tides so much greater from the moon than it is from the sun, even though the sun is much larger in terms of its mass?

Forces on the Tides: The Attraction of the Sun and the Moon on the Earth's Oceans
Geology
Mr. Traeger
Name: \qquad Period: \qquad Date: \qquad

1. What is Isaac Newtonब̂ Law of Gravitation? Write out the formula and explain it.
2. What is r̃Gòin the Law of Gravitation?
3. What do \tilde{m}_{1} òand \tilde{m}_{2} òstand for in the Law of Gravitation?
4. What does r̃òstand for in the Law of Gravitation?
5. If you double the r̃òterm in the denominator from 1 to 2 and then square it, by how much will the force of gravity decrease?
6. You will now calculate the force of gravity on the Earth from both the sun and the moon. Use r^{3} instead of r^{2} in the
denominator ONLY FOR TIDAL FORCE CALCULATIONS. All other force calculations use r^{2}. Fill in the following chart.

Body	Value of G?	Mass of Earth (m_{1}) in kilograms	Mass of Body (m_{2}) in kilograms	$\begin{aligned} & \text { Value of } \mathrm{G} \\ & \times \mathrm{m}_{1} \times \mathrm{m}_{2} \\ & \text { in } \mathrm{N}^{\star} \mathrm{m}^{2} \\ & \text { (numerator) } \end{aligned}$	Radius from Earth (r) meters	Radius from Earth cubed in meters ${ }^{3}$ (denominator)	Tidal Force in Newtons? Take the numerator and divide it by the denominator	Divide the Sunŝ tidal force by the Moonŝ tidal force.
Sun	$\begin{aligned} & 6.67 \mathrm{e}^{-11} \\ & \mathrm{~N}^{*} \mathrm{~m}^{2} / \mathrm{kg}^{2} \end{aligned}$	$5.97 \mathrm{e}^{24} \mathrm{~kg}$	$1.99 \mathrm{e}^{30} \mathrm{~kg}$		$\begin{aligned} & 1.50 e^{11} \\ & \mathrm{~m} \end{aligned}$			
Moon	$\begin{aligned} & 6.67 \mathrm{e}^{-11} \\ & \mathrm{~N}^{*} \mathrm{~m}^{2} / \mathrm{kg}^{2} \end{aligned}$	$5.97 \mathrm{e}^{24} \mathrm{~kg}$	$7.35 \mathrm{e}^{22} \mathrm{~kg}$		$\begin{aligned} & 3.91 e^{8} \\ & m \end{aligned}$			

7. After doing the calculation, why is the effect of the ocean tides so much greater from the moon than it is from the sun, even though the sun is much larger in terms of its mass?
