A Change of State: The Wonderful World of Water!

Earth Science

Mr. Traeger

Name: _____

Period: _____

Date:

Water comes in many forms. Understanding these different forms will help us to understand our weather more thoroughly.

Part 1: Water Basics

- 1. Draw the molecular structure of water.
- 2. Name all of the forms that you have seen water exist in.

Part 2: The Water Cycle

1. Describe a possible year in the life of a water molecule as seen in the graphic to the right.

Part 3: Change of State

- 1. Fill in the diagram above as Mr. T does it on the board.
- 2. In which direction does energy go into the beakers? Left or Right? Draw an arrow and label.
- 3. In which direction does energy go out of the beakers? Left or Right? Draw an arrow and label.

A Change of State: The Wonderful World of Water!

Earth Science

Mr. Traeger

Part 4: Heating of Water

1. Fill in the data table below as Mr. 1 heats the water in the front of the room.																				
Time in	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Minutes																				
Temperature	.9	.5	.5	.5	2	3	6	7	13	17	24	34	45	55	65	74	83	91	98	98
in °Celsius																				

1. Fill in the data table below as Mr. T heats the water in the front of the room.

2. Graph this data below:

x-axis label: _____

- 3. What temperature does water melt/freeze at?
- 4. What temperature does water boil at?
- 5. Why doesnot the temperature rise at the beginning of the heating when the water is ice? Where is the energy going to?
- 6. Where does the energy go to when water is between 0° and 100° Celsius?
- 7. Why does the temperature stop rising after 100° Celsius? Where is the energy going to?
- 8. What will eventually happen to the level of water in the beaker if we leave the water boiling? What will this do to the *humidity* of this room?