Basic trig and Vector Components

1. Find the x and y components of a vector with magnitude 50.0 at an angle of 33 degrees South of East.

$$x = 50.0 \cos 33^{\circ} = 41.9$$

2. Calculate the x and y components for the following triangles.

- 3. Calculate the resultant vector using the following instructions. What is there final position relative to their initial position?
 - a. Walk 13 ft North.
 - b. Walk 20.5 ft 47 degrees North of West.
 - c. Walk 10. ft East.

+15

$$\theta = \tan^{-1}\left(\frac{28}{4}\right)$$

$$= 81.87^{\circ}$$

$$tan 34^{\circ} = \frac{V}{12m}$$

$$hyp = \frac{12m}{\cos 34^{\circ}} = \frac{14.47}{\sin \theta} = \frac{9pP}{hyp}$$

$$x = 12m$$

$$x = 12m$$

$$tan 34^{\circ} = \frac{V}{12m}$$

$$hyp = \frac{12m}{\cos 34^{\circ}} = \frac{9pP}{hyp}$$

$$x = 12m$$

$$tan 34^{\circ} = \frac{V}{12m}$$

$$tan 34^{\circ} = \frac{9pP}{hyp}$$

$$hyp = \frac{12m}{hyp}$$

$$tan 34^{\circ} = \frac{9pP}{hyp}$$

$$tan 9 = \frac{9pP}{adj}$$

$$hyp = \frac{14.47}{hyp}$$

$$tan 9 = \frac{9pP}{adj}$$

$$hyp = \frac{14.47}{hyp}$$

$$tan 9 = \frac{9pP}{adj}$$

$$tan 9 = \frac{9$$

Find X and y

$$y=32m$$
 $X=25m$

$$\sin 38^\circ = \frac{x}{40}$$

$$x = 40m \sin 38^{\circ}$$

= 24.6265

$$y = 40.m \cos 38^\circ$$

= 31.52043

$$\cos 2b^\circ = \frac{15}{\text{hyp}}$$

$$\frac{15m}{50026} = 16.689$$

$$\frac{7.3mx}{5000} = 16.689$$

$$\text{motion 26}^{\circ} = \frac{x}{15m}$$

$$X = 15m \tan 26^\circ$$

WS

Vector Practice

Calculate the resultant vectors showing the component vectors and final magnitude and direction.

Draw a picture. Show all work!

Ex. Sarah walked 12 miles north, 3.0 miles west, then 15 miles at 27° north of east. /

$$15\cos 27^{\circ} = 13.365$$

 $15\sin 27^{\circ} = 6.81$

$$\frac{18}{18} = \frac{18}{18}$$

$$\int (53)^{2} + (153)^{2}$$
= 162 mle

$$\theta = \tan^{-1}\left(\frac{153}{53}\right) = \boxed{71^{\circ} \text{Nof E}}$$

- 2. A girl delivering newspapers covers her route by traveling three blocks west, four blocks north, 53then six blocks east.
 - What is the resultant displacement?

$$\theta = + a_{11} \left(\frac{4}{3} \right) = 53^{\circ}$$

b. What is the total distance she travels?

$$3 + 4 + 6 = 13 \text{ mod } 5$$

3. Jeremy threw the football 37 yards to Henry who ran 13 yards at 15° from the end zone to score a touchdown. How far was Jeremy from the end zone?

- find components SX, ZY to tail
 - 5. Can a vector have a component greater than its magnitude?

NO

6. Is it possible to add a vector quantity to a scalar quantity? Explain.

NO

Vx = 5.0 m/s

Ay = -5.4 m

9, = -9.8 m/52

V-04 = 0

apples and oranges

4. How would you add two vectors that are not parallel or perpendicular?

20. kg + 12 m/s North = crazy

7. A pelican flying along a horizontal path drops a fish from a height of 5.4 m while traveling at 5.0 How far does the fish travel horizontally before hitting the water? $\Delta y = \sqrt{t^2 + 4} \cdot \alpha t^2 \qquad \Delta x = \sqrt{t^2 + (5.0 \frac{m}{s})(1.05 s)} = 5.2 \text{ m}$

- $\Delta y = \frac{1}{2} a_{y} t^{2}$ $t = \sqrt{2 \Delta y/q} = \sqrt{\frac{2(-5.4 \text{ m})}{-9.8 \text{ m/s}^{2}}} = 1.05 \text{ s}$
- b. What are the fish's horizontal and vertical velocities just before hitting the water?

 $V_{\rm X} = [5, 0]^{\rm n}/_{\rm S}$ -> -10. m/s Vy = Vy A dy T $= 0 + (-9.8 \frac{\pi}{5}, \chi 1.05 s) = -10.2878$

8. Lost in the wilderness, Erik wandered 15.8 miles at 23° north of east, then 8.7 miles at 30.0° south of west. Relative to his initial position, where does Erik end up?

6: tan (1.87) = 14.57°

+7 mile +1.82 mile