Gen Physics

1. A special talent of Devon's is being able spin his expensive china on a 0.750 m rod. The largest plate he has been able to master spinning has a 2.5 kg and radius of 0.87 m . Determine the rotational inertia., $5 t-\frac{1}{7} \mathrm{MN}^{2}$

$$
I=\frac{1}{7} \cdot 2.5 \mathrm{Kg}(0.57 \mathrm{mi})^{2}
$$

2. The mighty ducks are tied at five to five with ten seconds to go before the game ending. With a 3.75 kg hockey stick, Chuck uses the hockey stick to take the winning shot.
a. What is the moment of inertia of the 1.15 m long hockey stick?

$$
U_{\mathrm{Se}} I=\frac{1}{3} M C^{2}, S C I=\frac{1}{3} \cdot 3.75 \mathrm{~kg} \cdot(1.15 \mathrm{~m})^{2}=
$$

b. How much torque is applied to the puck if Chuck uses the end of the stick to accelerate the puck at $4.8 \mathrm{~m} / \mathrm{s}^{2}$.
c. If the hockey puck has a mass of 1.82 kg , a radius of 0.051 m , änd a height of 3.00 cm , what is the puck's moment of inertia?

$$
\text { Wise } I=\frac{1}{2} M r \frac{2}{2}, 50 I=\frac{1}{2} \cdot 1.82 \mathrm{~kg}(0.051 \mathrm{~m})^{2}=
$$

3. The earth has a mass of $5.98 \times 10^{24} \mathrm{~kg}$ and a radius of $6.38 \times 10^{6} \mathrm{~m}$. What is the rotational inertia of the earth as it turns on its axis?

$$
\text { Use } I=\frac{2}{5} M R^{2}=\frac{\frac{2}{5} .5 .95 \times 10^{24} \mathrm{~kg}\left(6,35 \times 10^{6} \mathrm{~m}\right)^{2}}{\left.9.74 \times 10^{37} \mathrm{Kg} \cdot \mathrm{~m}^{2}\right)}
$$

4. A 30. N force is applied to a 0.20 m long beam at its right end, at an angle of 65 degrees to the beam. Determine the torque caused about an axis perpendicular to the beam and through its left end.

$$
T=r \times F=r f \sin (\theta)=\frac{0,0 \mathrm{~m} \cdot 30 \mathrm{~N}) \sin \left(65^{2}\right)}{5.44 \mathrm{Nm}}=9
$$

5. While studying the solar system, Mrs. Walsh's Science class learned about angular momentum. The students learned that Jupiter orbits the sun with a tangential velocity of $2079 \mathrm{~m} / \mathrm{s}$ at an average distance of $71,398,000$. m from the sun. If Jupiter's mass is $1.90 \times 10^{27} \mathrm{~kg}$, what is Jupiter's angular momentum?

$$
L=m \cdot v^{\prime} \cdot r=1.90 \times 10^{27} \frac{\mathrm{~kg} \cdot 2079 \frac{\mathrm{~m}}{\mathrm{z}} \cdot 71395000 \mathrm{~m}}{2.82 \times 10^{36} \frac{\mathrm{kgm}^{2}}{\mathrm{~s}}}=
$$

6. A cat crawls into a trashcan with a diameter of 0.60 m . The can tips over and begins to roll with the combined mass of 40.0 kg . What is the moment of inertia?

$$
\begin{array}{r}
I=M R^{2}=40.0 K \eta \cdot(D \cdot 60 n)^{2}= \\
14,1 K 3 n^{2}
\end{array}
$$

7. Jet Li and Mike Tyson are having a fight at a construction site. They end up on opposite ends of a 50.0 kg uniform steal beam hanging from a rope tied in the middle. Mike Tyson is 89.6 kg and 3.7 m from the fulcrum. Jet Li is 67.3 kg and crouches 4.2 m from the fulcrum. If neither of the

$$
E T
$$ - men move from this position, determine the net torque on the beam.

$$
\left.\sum \tau=\left(89.6 \mathrm{~kg} \cdot 3.7 \mathrm{~m} \cdot 9.8 .5 \frac{\mathrm{~m}}{\frac{1}{2}}\right)^{\prime}\right)-(6.7 .3 \mathrm{~kg}-4.2 \mathrm{~m} \cdot 9.5 \mathrm{~m}
$$

8. Victoria(35.0 kg) and Rachel $(48.6 \mathrm{~kg}$) are on one side of a seesaw at 1.0 m and 2.0 m respectively. Luck sits on the other side 1.5 m from the center. Find the mass of Luke that balances the torque caused by the girls.

 $(35.0 \mathrm{~kg} \cdot 10 \mathrm{~m})+(43.6 \mathrm{~kg} \cdot 2.2 \mathrm{~m}))=350 \mathrm{~kg} \cdot \mathrm{~m}+97.2 \mathrm{k} . \mathrm{ml})$
9. The average distance from Earth to the moon is $3.84 \times 10^{5} \mathrm{~km}$. However, at one point in 1912 that distance was only $3.56 \times 10^{5} \mathrm{~km}$. The average orbital speed of the moon when it is at its average distance from Earth is $3.68 \times 10^{3} \mathrm{~km} / \mathrm{hr}$. Calculate the speed the moon was traveling
 during 1912. (Use conservation of angular momentum.) $m V_{0} r_{0}=m v_{f} r_{f}$
10. When swinging your leg from your hip, why is the rotational inertia of the leg less when it is
bent?
11. A heavy iron cylinder and a light wooden cylinder, similar in shape roll down an incline. Which will have more acceleration?

$$
\tau=I, \alpha, \alpha=\frac{\tilde{T}}{I} .
$$

Gymnasts tuck

ugh the air. will taine wo r
angukencecoelerateon.

$$
I_{0} w_{0}=E_{f} \cdot U_{f}
$$

Class Copy
Do not write on
Ch $5 \& 8$ Equations this sheet. Thank you!

$$
\begin{aligned}
& \Delta v=\omega_{0} t+1 / 2 \alpha t^{2} \\
& \omega_{f}^{2}-\omega_{0}^{2}=2 \alpha \Delta v \\
& w_{f}=\omega_{0}+\alpha t \\
& a_{t}=\alpha r \\
& a_{c}=v^{2} / r
\end{aligned}
$$

(a) Particle

|0| Solid cylinder or disk

(i) Annular cylinder

(gi) Solid sphere about any diameter

(k) Thin rectangular sheet

(d) Thin cylindrical shell, hoop, or ring

(h) Thin spherical shell

II) Rectangular plate.

(j) Thin rectangular sheet

- FIGURE 8.16 Moments of inertia for some uniform. objects with common shapes

