

Rocket Science 101

Does conservation of energy really work?

The plan

Launch a rocket of known mass at V₀
 Measure how high it goes
 Compare to calculations
 Analyze differences

Estes rockets

Airframe: Tube with fins & nose cone
 Engine: Solid propellant, fast burn
 Recovery: Ejected parachute

Engine characteristics

"Cardboard cylinder 17X70 mm "Solid propellant casting "Electric ignition with hot wire "Delayed charge ejects chute

__

Thrust(t) imparts impulse to rocket

Time (sec)

Engine impulse

```
Impulse = I (can be calculated from
  thrust curve)
___
  Velocity imparted V = I/M
 ___
    Where I is the impulse imparted, and
 M is the rocket mass (assumed
    constant)
```

How high will the rocket fly?

At launch, the rocket is essentially on the ground with P.E. = 0, but K.E. = $M V^2/2$.

At maximum height H_{max} the rocket has zero velocity, hence K.E. = zero, but P.E. = **M** g H_{max}

P.E. + K.E. at launch = $0 + \mathbf{M} \sqrt{2}/2$ P.E. + K.E. at maximum height = $\mathbf{M} \mathbf{g} H_{max} + 0$

Derivation continued

Setting these two equal gives $M V^2/2 = M g H_{max}$ or $H_{max} = V^2/2g$

But V can be obtained from the previous slide, namely V = I/Mhence $V^2 = (I/M)^2$

Substituting this expression for V² into the expression for H_{max} one gets: $H_{max} = (I/M)^2 / 2g$

How long to max height?

//

$$V = V_0 - gt$$

//

At maximum height, V = 0

//

Hence time to max height can be obtained by 0 = V_0 - gt

" Or $t_{max} = V_0 / g$

Lets put in some numbers

__

What do we need to calculate H_{max} and $t_{\text{max}}?$

//

Engine impulse, I (Nt-secs)

__

Rocket mass, M (kg)

_

g (if you dond know it now...)

How do we get impulse?

The hardest way

//

Set up a fast acting force transducer and digital recorder; measure thrust vs time; integrate

How do we get impulse?

//

The hard way

__

Numerically integrate the Estes thrust curve

Time (sec)

	How do we get
""	impulse? The hardest way
	Set up a fast acting scale and digital recorder; measure thrust vs time; integrate
//	The hard way
	Numerically integrate the Estes thrust curve
	The easy way
	Look it up in the Estes tables

Estes engine specs

Prod. No.	Engine Type	Total Impulse	Time Delay	M: Lift	ax. Wt.	Max. Thrust		Thrust Duration	Initial Weight		Propellant Weight	
		N-sec	Sec.	0z.	g	Newtons	Lbs.	Sec.	0z.	g	0z.	g
SINGLE STAGE ENGINES (GREEN LABEL)												
1502	1/4A3-3T	0.625	3	1.0	28	4.9	1.1	0.25	0.20	5.6	0.03	0.85
1503	1/2A3-2T	1.25	2	2.0	57	8.3	1.9	0.3	0.20	5.6	0.06	1.75
1507	A3-4T	2.50	4	2.0	57	6.8	1.5	0.6	0.27	7.6	0.12	3.50
1511	A10-3T	2.50	3	3.0	85	13.0	2.9	0.8	0.28	7.9	0.13	3.78
1593	1/2A6-2	1.25	2	2.0	57	8.9	2.0	0.3	0.53	15.0	0.06	1.56
1598	A8-3	2.50	3	3.0	85	10.7	2.4	0.5	0.57	16.2	0.11	3.12
1601	B4-2	5.00	2	4.0	113	13.2	3.0	1.1	0.70	19.8	0.29	8.33
1602	B4-4	5.00	4	3.5	99	13.2	3.0	1.1	0.74	21.0	0.29	8.33
1605	B6-2	5.00	2	4.5	127	12.1	2.7	0.8	0.68	19.3	0.22	6.24
1606	B6-4	5.00	4	4.0	113	12.1	2.7	0.8	0.71	20.1	0.22	6.24
1613	C6-3	10.00	3	4.0	113	15.3	3.4	1.6	0.88	24.9	0.44	12.48
1614	C6-5	10.00	5	4.0	113	15.3	3.4	1.6	0.91	25.8	0.44	12.48
1622	C11-3	10.00	3	6.0	170	22.1	4.9	0.8	1.14	32.2	0.39	11.00
1623	C11-5	10.00	5	5.0	142	22.1	4.9	0.8	1.18	33.3	0.39	11.00
1666	D 12-3	20.00	3	14.0	396	32.9	7.4	1.6	1.49	42.2	0.88	24.93
1667	D 12-5	20.00	5	10.0	283	32.9	7.4	1.6	1.52	43.1	0.88	24.93
1673	E9-4	30.00	4	15.0	425	25.0	5.6	2.8	2.00	56.7	1.27	35.80
1674	E9-6	30.00	6	12.0	340	25.0	5.6	2.8	2.00	56.7	1.27	35.80

Estes engine specs

Prod. No.	Engine Type	Total Impulse	Time Delay	Ma Lift	ax. Wt.	Max. Thrust		Thrust Duration	rust Initial ation Weight		Propellant Weight	
		N-sec	Sec.	0z.	g	Newtons	Lbs.	Sec.	0z.	g	0z.	g
SINGLE	STAGE ENG	INES (GR	EEN LA	BEL)								
1502	1/4A3-3T	0.625	3	1.0	28	4.9	1.1	0.25	0.20	5.6	0.03	0.85
1503	1/2A3-2T	1.25	2	2.0	57	8.3	1.9	0.3	0.20	5.6	0.06	1.75
1507	A3-4T	2.50	4	2.0	57	6.8	1.5	0.6	0.27	7.6	0.12	3.50
1511	A10-3T	2.50	3	3.0	85	13.0	2.9	0.8	0.28	7.9	0.13	3.78
1593	1/2A6-2	1.25	2	2.0	57	8.9	2.0	0.3	0.53	15.0	0.06	1.56
1598	A8-3	2.50	3	3.0	85	10.7	2.4	0.5	0.57	16.2	0.11	3.12
1001	84-2	5.00	Z	4.0	113	13.Z	3.0	1.1	0.70	19.8	0.29	8.33
1602	B4-4	5.00	4	3.5	99	13.2	3.0	1.1	0.74	21.0	0.29	8.33
1605	B6-2	5.00	2	4.5	127	12.1	2.7	0.8	0.68	19.3	0.22	6.24
1606	B6-4	5.00	4	4.0	113	12.1	2.7	0.8	0.71	20.1	0.22	6.24
1613	C6-3	10.00	3	4.0	113	15.3	3.4	1.6	0.88	24.9	0.44	12.48
1614	C6-5	10.00	5	4.0	113	15.3	3.4	1.6	0.91	25.8	0.44	12.48
1622	C11-3	10.00	3	6.0	170	22.1	4.9	0.8	1.14	32.2	0.39	11.00
1623	C11-5	10.00	5	5.0	142	22.1	4.9	0.8	1.18	33.3	0.39	11.00
1666	D12-3	20.00	3	14.0	396	32.9	7.4	1.6	1.49	42.2	0.88	24.93
1667	D12-5	20.00	5	10.0	283	32.9	7.4	1.6	1.52	43.1	0.88	24.93
1673	E9-4	30.00	4	15.0	425	25.0	5.6	2.8	2.00	56.7	1.27	35.80
1674	E9-6	30.00	6	12.0	340	25.0	5.6	2.8	2.00	56.7	1.27	35.80

Letas get specific

We will use a rocket with mass 83 or 68 g We will use an A8-3 engine, I = 2.5 Ntsecs

//

 $H_{max} = (I/M)^2 / 2g$

//

//

How high will it go?

//

If $V_0 = I/M$, and $t_{max} = V_0 / g$

How long to maximum height?

Some things to think about

If we used a more powerful engine, say B4-2 with I = 5 Nt-secs, or C6-3 with I = 10 Nt-secs, how high will this rocket go? Do you think you could see it at burn out?

What are the important assumptions used in this model?

Plan View

The general idea

Trial run

Trial run

_

Our meter stick angle-measuring device is not as accurate as we would like it to be

//

And it takes some practice to use it well To get some experience with this technique try something simple and stationary: Height of this building or the

elevation of the Moon

Observer duties

Track the rocket to its max height with meter stick "Measure *elevation* angle "Compute $H_{max} = L \tan \theta$

Data log

Observers

L = ft in = meters

Run #	tan	H

Why so far from the launch?

//

Imagine you were excitingly close to the launch such that the angle measured was 80°

//

Calculate the difference in computed height for a $\pm 2^{\circ}$ error

Repeat the calculation for a measured angle of 20°

It would be nice to make multiple measurements of and note the dispersion

//

But the uncooperative rocket wond stand still and allow many sightings!

__

So what do we do?

//

Have several independent observers take sightings from the same spot

Then study the dispersions in their numbers to get mean and standard deviation

Past experiments tend to have lots of scatter in the data

Maybe it has something to do with the measurement

//

We really only measure 2 things: L and

//

How well do we measure them?

//

How do errors make a difference?

__

First wed look into the effect of measurement errors on the thing we are trying to know, H_{max}

Sensitivity

```
H_{max} = L tan
```

```
//
```

//

Neither L nor are measured exactly

//

How much difference does that make to H?

//

In other words, how sensitive is H to errors in L and ?

//

H is a function of L and

//

^a H is some function of ^a L and ^a

//

Where ^a L and ^a are the errors in the measurements of those two quantities

//

```
Letos get ratios: <sup>a</sup> H/<sup>a</sup> L and <sup>a</sup> H/<sup>a</sup>
```

```
Sensitivity continued
What is the limit of <sup>a</sup> H/<sup>a</sup> L as <sup>a</sup> L -> 0?
   Itos the derivative dH/dL!
_
   So for very small <sup>a</sup> L, <sup>a</sup> H/<sup>a</sup> L \approx dH/dL
  Hence <sup>a</sup> H \approx dH/dL <sup>"</sup> <sup>a</sup> L
From H_{max} = L \tan (dH/dL) = \tan (dH/dL)
___
  To make the error in H, <sup>a</sup> H, as insensitive as
  possible to errors in L, <sup>a</sup> L, what do we do?
   ___
     We make tan as small as practical
   //
     So we make as small as possible
```


Minimize sensitivity to measurement errors

To make the error in H, ^a H, as insensitive as possible to errors in L, ^a L, what do we do?
We make tan as small as practical
So we make as small as possible
To make theta as small as possible, we get as far back from the launch site as practical

I know, that as less exciting!

The plan Groups of 2-3 students // Pick a place to make your measurements Three students make the necessary horizontal measurement, L in the figure ___ Others make angle measurements Do them independently and privately Switch and do it again

Some complications

The mass of the rocket it not constant Propellant mass is about 3 g ~ 5% of total Rocket equation $\Delta v = v_{\rm e} \ln \frac{m_0}{m_1}$ Where Ve is exhaust velocity and m₀ & m₁ are initial and final masses Not a big effect for this size rocket

End of lecture

Off to the field!!!

More complications Aerodynamics really works Drag on the rocket is ~.08 Nt @ 50 m/s Proportional to V² Max thrust ~ 10 Nt, weight ~ 0.5 Nt How well did you track the rocket? Was the rocket L meters away? How accurately did you measure ? ___ Did you make computational errors?

How big are the measurement errors? Note that ^a H \approx dH/dL ^{~ a} L And ^a H \approx dH/d ^{~ a}

//

But approximately how big are ^a L and ^a ?

//

How do determine uncertainty in things we measure?

//

Measure them several times and note the differences

//

That works for L, make multiple tries and see how they differ

//

How much would you expect ^a L to be?

Trial run

What do we do with the observations?

Observer Grp	L	Launch 1	Launch 2	Launch 3
A				
В				
С				
D				
E				
F				
Mean				
Mean H = L tan				
L tan (±)				

Data reduction

_

Back in the classroom, we will crunch the results

_

Let see if we can get a best estimate of the actual max height and compare that to calculations