$\AA_{\text {Elton John }}$

## Rocket Science 101

Does conservation of energy really work?

## The plan

Alaunch a rocket of known mass at $\mathrm{V}_{0}$
Almeasure how high it goes
Acompare to calculations
Ánalyze differences

## Estes rockets

ÁAirframe: Tube with fins \& nose cone
AEngine: Solid propellant, fast burn
ARecovery: Ejected parachute

## Engine characteristics

\& Cardboard cylinder 17X70 mm ÁSolid propellant casting Flectric ignition with hot wire ADelayed charge ejects chute
$\AA_{\text {Thrust(t) }}$ imparts impulse to rocket


## Engine impulse

Aimpulse = I (can be calculated from thrust curve)
AVelocity imparted $V=1 / \mathrm{M}$
AWhere I is the impulse imparted, and
$\AA_{M} M$ is the rocket mass (assumed constant)

## How high will the rocket fly?

At launch, the rocket is essentially on the ground with
P.E. = 0, but
K.E. $=\mathbf{M ~ V}^{2} / 2$.

At maximum height $H_{\max }$ the rocket has zero velocity, hence K.E. = zero, but P.E. $=\mathbf{M g} \mathrm{H}_{\text {max }}$
P.E. + K.E. at launch $=0+\mathrm{M} \mathrm{V}^{2} / 2$
P.E. + K.E. at maximum height $=\mathbf{M}$ g $\mathrm{H}_{\max }+0$

## Derivation continued

Setting these two equal gives
$\mathbf{M} \mathrm{V}^{2} / 2=\mathbf{M} \mathrm{g} \mathrm{H}_{\text {max }}$
or $\mathrm{H}_{\text {max }}=\mathrm{V}^{2} / 2 \mathrm{~g}$
But V can be obtained from the previous slide, namely $\mathrm{V}=\mathrm{I} / \mathrm{M}$
hence $\mathrm{V}^{2}=(\mathrm{I} / \mathrm{M})^{2}$
Substituting this expression for $\mathrm{V}^{2}$ into the expression for $H_{\text {max }}$ one gets:
$H_{\text {max }}=(I / M)^{2} / 2 g$

## How long to max height?

$\AA \mathrm{Z}=\mathrm{v}_{0}-\mathrm{gt}$
$\AA_{\text {At maximum height, } v=0}$
ÁHence time to max height can be obtained by $0=$ $V_{0}$-gt
Aor tmax $=V_{0} / \mathrm{g}$

# Letế put in some numbers 

AWhat do we need to calculate $H_{\text {max }}$ and $t_{\text {max }}$ ?
ÅEngine impulse, I (Nt-secs)
ARocket mass, M (kg)
$\AA_{g}$ (if you don@ know it now...)

## How do we get impulse?

Åthe hardest way
Aset up a fast acting force transducer and digital recorder; measure thrust vs time; integrate

## How do we get impulse?

Åthe hard way
ANumerically integrate the Estes thrust curve


## How do we get impulse?

Åthe hardest way
Aset up a fast acting scale and digital recorder; measure thrust vs time; integrate
AThe hard way
ANumerically integrate the Estes thrust curve
AThe easy way
Alook it up in the Estes tables

## Estes engine specs

| Prod. No. | Engine Type | $\begin{gathered} \text { Total } \\ \text { Impulse } \end{gathered}$ | $\begin{aligned} & \text { Time } \\ & \text { Delar } \end{aligned}$ | Max. Lift Wt. |  | Max. Thrust |  | Thrust Duration | Initial Weight |  | PropellantWeight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N -sec | Sec. | 0 z. | 9 | Newtons | Lbs. | Sec. | 02. | 9 | 02. | 8 |
| SINGLE STAGE ENGINES (GREEN LABEL) |  |  |  |  |  |  |  |  |  |  |  |  |
| 1502 | 1/4A3-3T | 0.625 | 3 | 1.0 | 28 | 4.9 | 1.1 | 0.25 | 0.20 | 5.6 | 0.03 | 0.85 |
| 1503 | 1/2A3-2T | 1.25 | 2 | 2.0 | 57 | 8.3 | 1.9 | 0.3 | 0.20 | 5.6 | 0.06 | 1.75 |
| 1507 | A3-4T | 2.50 | 4 | 2.0 | 57 | 6.8 | 1.5 | 0.6 | 0.27 | 7.6 | 0.12 | 3.50 |
| 1511 | A10-3T | 2.50 | 3 | 3.0 | 85 | 13.0 | 2.9 | 0.8 | 0.28 | 7.9 | 0.13 | 3.78 |
| 1593 | 1/2A6-2 | 1.25 | 2 | 2.0 | 57 | 8.9 | 2.0 | 0.3 | 0.53 | 15.0 | 0.06 | 1.56 |
| 1598 | A8-3 | 2.50 | 3 | 3.0 | 85 | 10.7 | 2.4 | 0.5 | 0.57 | 16.2 | 0.11 | 3.12 |
| 1601 | B4-2 | 5.00 | 2 | 4.0 | 113 | 13.2 | 3.0 | 1.1 | 0.70 | 19.8 | 0.29 | 8.38 |
| 1602 | B4-4 | 5.00 | 4 | 3.5 | 99 | 13.2 | 3.0 | 1.1 | 0.74 | 21.0 | 0.29 | 8.33 |
| 1605 | 86-2 | 5.00 | 2 | 4.5 | 127 | 12.1 | 2.7 | 0.8 | 0.68 | 19.3 | 0.22 | 6.24 |
| 1606 | B6-4 | 5.00 | 4 | 4.0 | 113 | 12.1 | 2.7 | 0.8 | 0.71 | 20.1 | 0.22 | 6.24 |
| 1613 | C6-3 | 10.00 | 3 | 4.0 | 113 | 15.3 | 3.4 | 1.6 | 0.88 | 24.9 | 0.44 | 12.48 |
| 1614 | C6-5 | 10.00 | 5 | 4.0 | 113 | 15.3 | 3.4 | 1.6 | 0.91 | 25.8 | 0.44 | 12.48 |
| 1622 | C11-3 | 10.00 | 3 | 6.0 | 170 | 22.1 | 4.9 | 0.8 | 1.14 | 32.2 | 0.39 | 11.00 |
| 1623 | C11-5 | 10.00 | 5 | 5.0 | 142 | 22.1 | 4.9 | 0.8 | 1.18 | 33.3 | 0.39 | 11.00 |
| 1666 | D12-3 | 20.00 | 3 | 14.0 | 396 | 32.9 | 7.4 | 1.6 | 1.49 | 42.2 | 0.88 | 24.93 |
| 1667 | D12-5 | 20.00 | 5 | 10.0 | 283 | 32.9 | 7.4 | 1.6 | 1.52 | 43.1 | 0.88 | 24.93 |
| 1673 | E9-4 | 30.00 | 4 | 15.0 | 425 | 25.0 | 5.6 | 2.8 | 2.00 | 56.7 | 1.27 | 35.80 |
| 1674 | E9-6 | 30.00 | 6 | 12.0 | 340 | 25.0 | 5.6 | 2.8 | 2.00 | 56.7 | 1.27 | 35.80 |

## Estes engine specs

| Prod. No. | Engine Type | $\begin{gathered} \text { Total } \\ \text { Impulse } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Time } \\ & \text { Delay } \\ & \hline \end{aligned}$ | Max. Lift Wt. |  | Max. <br> Thrust |  | Thrust Duration | Initial Weight |  | $\begin{gathered} \text { Propellant } \\ \text { Weight } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N -sec | Sec. | 02. | 9 | Newtons | Lbs. | Sec. | 02. | 9 | 02. | 9 |

## SINGLE STAGE ENGINES (GREEN LABEL)

| 1502 | $1 / 4 \mathrm{~A} 3-3 \mathrm{~T}$ | 0.625 | 3 | 1.0 | 28 | 4.9 | 1.1 | 0.25 | 0.20 | 5.6 | 0.03 | 0.85 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1503 | $1 / 2 \mathrm{~A} 3-2 \mathrm{~T}$ | 1.25 | 2 | 2.0 | 57 | 8.3 | 1.9 | 0.3 | 0.20 | 5.6 | 0.06 | 1.75 |
| 1507 | $\mathrm{~A} 3-4 \mathrm{~T}$ | 2.50 | 4 | 2.0 | 57 | 6.8 | 1.5 | 0.6 | 0.27 | 7.6 | 0.12 | 3.50 |
| 1511 | $\mathrm{~A} 10-3 \mathrm{~T}$ | 2.50 | 3 | 3.0 | 85 | 13.0 | 2.9 | 0.8 | 0.28 | 7.9 | 0.13 | 3.78 |
| 1598 | $1 / 2 \mathrm{~A} 6-2$ | 1.25 | 2 | 2.0 | 57 | 8.9 | 2.0 | 0.3 | 0.53 | 15.0 | 0.06 | 1.56 |


| 1598 | A8-3 | 2.50 | 3 | 3.0 | 85 | 10.7 | 2.4 | 0.5 | 0.57 | 16.2 | 0.11 | 3.12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1601 | 104-2 | 5.00 | < | 4.0 | 115 | 15.2 | 5.0 | T. | U.70 | 19.0 | U.29 | 6. 5.5 |
| 1602 | 84-4 | 5.00 | 4 | 3.5 | 99 | 13.2 | 3.0 | 1.1 | 0.74 | 21.0 | 0.29 | 8.33 |
| 1605 | B6-2 | 5.00 | 2 | 4.5 | 127 | 12.1 | 2.7 | 0.8 | 0.68 | 19.3 | 0.22 | 6.24 |
| 1606 | 86-4 | 5.00 | 4 | 4.0 | 113 | 12.1 | 2.7 | 0.8 | 0.71 | 20.1 | 0.22 | 6.24 |
| 1613 | C6-3 | 10.00 | 3 | 4.0 | 113 | 15.3 | 3.4 | 1.6 | 0.88 | 24.9 | 0.44 | 12.48 |
| 1614 | C6-5 | 10.00 | 5 | 4.0 | 113 | 15.3 | 3.4 | 1.6 | 0.91 | 25.8 | 0.44 | 12.48 |
| 1622 | C11-3 | 10.00 | 3 | 6.0 | 170 | 22.1 | 4.9 | 0.8 | 1.14 | 32.2 | 0.39 | 11.00 |
| 1623 | C11-5 | 10.00 | 5 | 5.0 | 142 | 22.1 | 4.9 | 0.8 | 1.18 | 33.3 | 0.39 | 11.00 |
| 1666 | D12-3 | 20.00 | 3 | 14.0 | 396 | 32.9 | 7.4 | 1.6 | 1.49 | 42.2 | 0.88 | 24.93 |
| 1667 | D12-5 | 20.00 | 5 | 10.0 | 283 | 32.9 | 7.4 | 1.6 | 1.52 | 43.1 | 0.88 | 24.93 |
| 1673 | E9-4 | 30.00 | 4 | 15.0 | 425 | 25.0 | 5.6 | 2.8 | 2.00 | 56.7 | 1.27 | 35.80 |
| 1674 | E9-6 | 30.00 | 6 | 12.0 | 340 | 25.0 | 5.6 | 2.8 | 2.00 | 56.7 | 1.27 | 35.80 |

## Letê get specific

Awe will use a rocket with mass 83 or 68
$\AA_{\text {we will use an A8-3 engine, } \mathrm{I}=2.5 \mathrm{Nt}-}^{\mathrm{g}}$ secs
$\AA_{H_{\text {max }}=(I I M)^{2} / 2 \mathrm{~g}}$
Å How high will it go?
$\AA_{\text {If }} \mathrm{V}_{0}=\mathrm{I} / \mathrm{M}$, and $\mathrm{t}_{\text {max }}=\mathrm{V}_{0} / \mathrm{g}$
$\AA_{\text {How long to maximum height? }}$

## Some things to think about

Alf we used a more powerful engine, say B4-2 with I = 5 Nt -secs, or C6-3 with I = 10 Nt -secs, how high will this rocket go? ADo you think you could see it at burn out?
AWhat are the important assumptions used in this model?
\& Off to the field How do we measure the height of the trajectory?
Å
Observer positions clustered as far as
practical from launch site all at approximately the same distance L

Distance $=L \quad$ Launch site
Observer site

Plan View

## The

## general

 idea

## Trial run

ASight on the upper edge of the building ÀMeasure elevation angle x
Å Compute $H_{\text {max }}=L$ tan $x$
$\mathcal{A}$ Compare result with others


## Trial run

Aour meter stick angle-measuring device is not as accurate as we would like it to be
AAnd it takes some practice to use it well
Ato get some experience with this technique try something simple and stationary: Height of this building or the elevation of the Moon

## Observer duties

İrack the rocket to its max height with meter stick ÀMeasure elevation angle $\times$
\& Compute $\mathrm{H}_{\text {max }}=\mathrm{L} \tan \mathrm{x}$


## Data log

Observers
$\mathrm{L}=\mathrm{ft}$ in $=$ meters


## Why so far from the launch?

Almagine you were excitingly close to the launch such that the angle measured was $80^{\circ}$

ÅcCalculate the difference in computed height for a $\pm 2^{\circ}$ error
ARepeat the calculation for a measured angle of $20^{\circ}$

Alt would Estimating errors in in measurements of $x$ and note the dispersion
ABut the uncooperative rocket wonø stand still and allow many sightings!
Aso what do we do?
AHave several independent observers take sightings from the same spot
AThen study the dispersions in their numbers to get mean and standard deviation

# Past experiments tend to have lots of scatter in the data 

Å
Maybe it has something to do with the measurement
AWe really only measure 2 things: $L$ and X
A How well do we measure them? A How do errors make a difference?
A ${ }^{\text {First wed look into the effect of measurement errors }}$ on the thing we are trying to know, $\mathrm{H}_{\text {max }}$

## Sensitivity

$\AA_{H_{\text {max }}}=L \tan x$
$\AA_{\text {Neither L nor } x}$ are measured exactly
$\AA_{\text {How much difference does that make to } \mathrm{H} \text { ? }}$
Å In other words, how sensitive is H to errors in L and x ?
$\AA_{H}$ is a function of $L$ and $x$
Å $\not \varkappa^{H}$ is some function of $\not \mathrm{Z}^{\text {and }} æ^{\mathrm{x}}$
Åwhere $\not$ a $^{2}$ and $æ^{\mathrm{x}}$ are the errors in the measurements of those two quantities


## Sensitivity continued

A What is the limit of $\nsupseteq H / \nsupseteq$ as $\nsupseteq->0$ ? Åltés the derivative dH/dL!
Åso for very small $\nsupseteq, \nsupseteq \mathrm{H} / \nsupseteq \approx \mathrm{dH} / \mathrm{dL}$

$\AA_{\text {From } H_{\text {max }}=L \tan x, d H / d L=\tan x}$
 possible to errors in $L$, $\not \Perp$, what do we do?
AWe make $\tan x$ as small as practical
Åso we make ${ }^{x}$ as small as possible


## Geometric interpretation



## Minimize sensitivity to

## measurement errors

Å To make the error in $\mathrm{H}, \mathrm{æH}^{2}$, as insensitive as possible to errors in $L$, æ\&, what do we do?
AWe make $\tan x$ as small as practical Aso we make $x$ as small as possible
Å ${ }_{\text {To make the }}$ mas as back from the launch site as practical Al know, thatốs less exciting!

## The plan

Agroups of 2-3 students
APick a place to make your measurements
Athree students make the necessary horizontal measurement, $L$ in the figure Aothers make angle measurements ADo them independently and privately A switch and do it again

## Some complications

A The mass of the rocket it not constant Apropellant mass is about $3 \mathrm{~g} \sim 5 \%$ of total
$\AA_{\text {Rocket equatior }} \Delta v=v_{\mathrm{e}} \ln \frac{m_{0}}{m_{1}}$ Awhere $V_{\text {e is exhaust velocity and }}$ $A_{m_{0}} \& m_{1}$ are initial and final masses $\AA_{\text {Not a big effect for this size rocket }}$

## End of lecture

Åoff to the field!!!

## More complications

 $\AA_{\text {Aerodynamics really works }}$Årag on the rocket is $\sim .08 \mathrm{Nt} @ 50 \mathrm{~m} / \mathrm{s}$ ÁProportional to $\mathrm{V}^{2}$ $\AA_{\text {Max thrust }} \sim 10 \mathrm{Nt}$, weight $\sim 0.5 \mathrm{Nt}$
ÅHow well did you track the rocket?
Åwas the rocket L meters away?
Å How accurately did you measure $\times$ ?
Å Did you make computational errors?

## How big are the measurement errors?

ANote that æH $\approx \mathrm{dH} / \mathrm{dL}$ Åæ AAnd æH $\approx \mathrm{dH} / \mathrm{d} \times$ Åæ
$\AA_{\text {But approximately how big are } \not \not \not \text { and } æ \text { ? }}$
ÅHow do determine uncertainty in things we measure?
$\AA_{\text {Measure them several times and note the }}$ differences
$\AA_{\text {That works }}^{\text {they differ }}$
ÅHow much would you expect $\nsupseteq$ to be?

## Letês try some realistic numbers

$\AA_{\not \partial H}=d H / d x$ Åæ $=\left(L / \cos ^{2} x\right) \AA \nsupseteq$ $\AA$ What is a reasonable value of $æ$ ?

Åtry $\nsupseteq=0.1$ radians
AThe smallest $\mathrm{dH} / \mathrm{dx}$ can be is $\mathrm{L}($ when $\mathrm{x}=0)$
Åso even for small $x, \npreceq-2 \approx$ or about 0.1 L $\AA_{\text {For larger } \mathrm{x}}$, it©̂́s even worse
AThis may be the whole reason results are scattered

## Trial run

ASight on the upper edge of the building ÀMeasure elevation angle x
Å Compute $H_{\text {max }}=L$ tan $x$
$\mathcal{A}$ Compare result with others


## What do we do with the observations?

| Observer Grp | L | Launch 1x | Launch 2x | Launch 3x |
| :---: | :---: | :---: | :---: | :---: |
| A |  |  |  |  |
| в |  |  |  |  |
| c |  |  |  |  |
| D |  |  |  |  |
| E |  |  |  |  |
| F |  |  |  |  |
| Mean |  |  |  |  |
| ů |  |  |  |  |
| Mean $H=L \tan x$ |  |  |  |  |
| $\mathrm{L} \tan (\mathrm{x} \pm$ U) |  |  |  |  |

## Data reduction

$\AA_{\text {Back in the classroom, we will crunch the }}$ results
$\AA_{\text {letốs see }}$ if we can get a best estimate of the actual max height and compare that to calculations

