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Rocket Science 101
Does conservation of energy really work?



The plan

• Launch a rocket of known mass at V0

• Measure how high it goes

• Compare to calculations

• Analyze differences



Estes rockets

• Airframe: Tube with fins & nose cone

• Engine: Solid propellant, fast burn

• Recovery: Ejected parachute



Engine characteristics

• Thrust(t) imparts impulse to rocket

•Cardboard cylinder 17X70 mm
•Solid propellant casting
•Electric ignition with hot wire

•Delayed charge ejects chute



Engine impulse

• Impulse = I (can be calculated from 
thrust curve)

• Velocity imparted V = I/M

• Where I is the impulse imparted, and

• M is the rocket mass (assumed 
constant)



How high will the rocket fly?

At launch, the rocket is essentially on the ground with 
P.E. = 0, but 
K.E. = M V2/2. 

At maximum height Hmax the rocket has zero velocity, hence 
K.E. = zero,
but P.E. = M g Hmax

P.E. + K.E. at launch = 0 + M V2/2
P.E. + K.E. at maximum height = M g Hmax + 0



Derivation continued
Setting these two equal gives 
M V2/2 = M g Hmax

or Hmax = V2/2g

But V can be obtained from the previous slide, namely
V  = I/M
hence V2 = (I/M)2

Substituting this expression for V2 into the expression for 
Hmax one gets:
Hmax = (I/M)2 /2g



How long to max 
height?

• V = V0 - gt

• At maximum height, V = 0

• Hence time to max height can be obtained by 0 = 
V0 - gt

• Or tmax = V0 / g



Let’s put in some 
numbers

• What do we need to calculate Hmax and 
tmax?

• Engine impulse, I (Nt-secs)

• Rocket mass, M (kg)

• g (if you don’t know it now...)



How do we get 
impulse?

• The hardest way

• Set up a fast acting force transducer 
and digital recorder; measure thrust vs 
time; integrate



How do we get 
impulse?

• The hard way

• Numerically integrate the Estes thrust 
curve



How do we get 
impulse?• The hardest way

• Set up a fast acting scale and digital 
recorder; measure thrust vs time; 
integrate

• The hard way

• Numerically integrate the Estes thrust 
curve

• The easy way

• Look it up in the Estes tables



Estes engine specs



Estes engine specs



Let’s get specific
• We will use a rocket with mass 83 or 68 

g

• We will use an A8-3 engine, I = 2.5 Nt-
secs

• Hmax = (I/M)2 /2g

• How high will it go?

• If V0 = I/M, and tmax = V0 / g

• How long to maximum height?



Some things to think about

• If we used a more powerful engine, say 
B4-2 with I = 5 Nt-secs, or C6-3 with I = 
10 Nt-secs, how high will this rocket go?

• Do you think you could see it at burn 
out?

• What are the important assumptions 
used in this model?



Off to the field• How do we measure the height of the 
trajectory?

• Observer positions clustered as far as 
practical from launch site all at 
approximately the same distance L

Launch site

Observer site

Plan View



The 
general 

idea



Trial run

Hmax

L

∢ϴ

•Sight on the upper edge of the building
•Measure elevation angle ϴ
•Compute Hmax = L tan ϴ

Building
•Compare result with others 



Trial run
• Our meter stick angle-measuring device 

is not as accurate as we would like it to 
be

• And it takes some practice to use it well

• To get some experience with this 
technique try something simple and 
stationary: Height of this building or the 
elevation of the Moon



Observer duties

Hmax

L

∢ϴ

•Track the rocket to its max height with meter stick
•Measure elevation angle ϴ
•Compute Hmax = L tan ϴ



Data log

Run # ϴ tan ϴ H

Observers

L =       ft   in  =     meters



Why so far from the launch?

• Imagine you were excitingly close to the 
launch such that the angle measured 
was 80°

• Calculate the difference in computed 
height for a ±2° error

• Repeat the calculation for a measured 
angle of 20°



Estimating errors in ϴ• It would be nice to make multiple 
measurements of ϴ and note the 
dispersion

• But the uncooperative rocket won’t 
stand still and allow many sightings!

• So what do we do?

• Have several independent observers 
take sightings from the same spot

• Then study the dispersions in their 
numbers to get mean and standard 
deviation



Past experiments tend to 
have lots of scatter in the 

data
• Maybe it has something to do with the 

measurement

• We really only measure 2 things: L and 
ϴ

• How well do we measure them?

• How do errors make a difference?

• First we’ll look into the effect of measurement errors 
on the thing we are trying to know, Hmax



Sensitivity
• Hmax = L tan ϴ
• Neither L nor ϴ  are measured exactly

• How much difference does that make to H?

• In other words, how sensitive is H to errors in L 
and ϴ?

• H is a function of L and ϴ

• ∆H is some function of ∆L and ∆ ϴ

• Where ∆L and ∆ ϴ are the errors in the 
measurements of those two quantities

• Let’s get ratios: ∆H/∆L and ∆H/∆ ϴ



Sensitivity continued
• What is the limit of ∆H/∆L as ∆L -≻ 0?

• It’s the derivative dH/dL!

• So for very small ∆L, ∆H/∆L ≈ dH/dL

• Hence ∆H ≈ dH/dL  •  ∆L

• From Hmax = L tan ϴ, dH/dL = tan ϴ

• To make the error in H, ∆H, as insensitive as 
possible to errors in L, ∆L, what do we do?

• We make tan ϴ as small as practical

• So we make ϴ as small as possible



Effect of errors in ϴ

• dH/dϴ = L sec2 ϴ = L/cos2 ϴ

• And sec2 ϴ can get very large!

• For very large ϴ, dH/dϴ -≻ ∞

• So again to make H as least sensitive to 
measurement errors as practical, make ϴ as small 
as practical

• What does this mean when we go to the field?

• Stand far away from the rocket!



Geometric interpretation

L
∢ϴ

Small ∢ϴ
tan ϴ small

∆H

∢ϴ

∆H

∆ϴ

Large ∢ϴ
tan ϴ = 1

∆ϴ



Minimize sensitivity to 
measurement errors
• To make the error in H, ∆H, as insensitive as 

possible to errors in L, ∆L, what do we do?

• We make tan ϴ as small as practical

• So we make ϴ as small as possible

• To make theta as small as possible, we get as far 
back from the launch site as practical

• I know, that’s less exciting!



The plan
• Groups of 2-3 students

• Pick a place to make your 
measurements

• Three students make the necessary 
horizontal measurement, L in the figure

• Others make angle measurements

• Do them independently and privately

• Switch and do it again



Some complications
• The mass of the rocket it not constant

• Propellant mass is about 3 g ~ 5% of 
total

• Rocket equation 

• Where ve is exhaust velocity and

• m0 & m1 are initial and final masses

• Not a big effect for this size rocket



End of lecture

• Off to the field!!!



More complications
• Aerodynamics really works

• Drag on the rocket is ~.08 Nt @ 50 m/s

• Proportional to V2

• Max thrust ~ 10 Nt, weight ~ 0.5 Nt

• How well did you track the rocket?

• Was the rocket L meters away?

• How accurately did you measure ϴ?

• Did you make computational errors?



How big are the measurement errors?
• Note that ∆H ≈ dH/dL • ∆L

• And ∆H ≈ dH/dϴ • ∆ϴ

• But approximately how big are ∆L and ∆ϴ?

• How do determine uncertainty in things we measure?

• Measure them several times and note the 
differences

• That works for L, make multiple tries and see how 
they differ

• How much would you expect ∆L to be?



Let’s try some realistic numbers

• ∆H = dH/dϴ • ∆ϴ = (L/cos2 ϴ) • ∆ϴ

• What is a reasonable value of ∆ϴ?

• Try ∆ϴ = 0.1 radians

• The smallest dH/dϴ can be is L (when ϴ = 0)

• So even for small ϴ, ∆H ≈ L ∆ϴ or about 0.1L

• For larger ϴ, it’s even worse

• This may be the whole reason results are scattered



Trial run

Hmax

L

∢ϴ

•Sight on the upper edge of the building
•Measure elevation angle ϴ
•Compute Hmax = L tan ϴ

Building
•Compare result with others 



What do we do with the observations?
Observer Grp L Launch 1 ϴ Launch 2 ϴ Launch 3 ϴ

A

B

C

D

E

F

Mean

σ

Mean H = L tan ϴ

L tan ( ϴ ± σ)



Data reduction

• Back in the classroom, we will crunch the 
results

• Let’s see if we can get a best estimate of 
the actual max height and compare that 
to calculations


